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Abstract  27 

Biomass burning (BB) is a significant source for dicarboxylic acids (diacids) and 28 

related compounds that play important roles in atmospheric chemistry and climate 29 

change. In this study, a combustion chamber and oxidation flow reactor were used to 30 

generate fresh and aged aerosols from burned rice, maize, and wheat straw to 31 

investigate atmospheric aging and the stable carbon isotopic (δ
13

C) composition of 32 

these emissions. Succinic acid (C4) was the most abundant species in fresh samples; 33 

while, oxalic acid (C2) became dominant after atmospheric aging. Of all diacids, C2 34 

had the highest aged to fresh emission ratios of 50.8 to 64.5, suggesting that C2 is 35 

largely produced through secondary photochemical processes. Compared with fresh 36 

samples, the emission factors of ketocarboxylic acids and α-dicarbonyls increased 37 

after 2-day but decreased after 7-day aging, indicating short residence time and further 38 

atmospheric degradation from 2- to 7-days. The C2 δ
13

C values for aged biomass 39 

samples were higher than those of urban aerosols but lower than marine or mountain 40 

aerosols, and the C2 δ
13

C became isotopically heavier during aging. Relationships 41 

between the reduction in volatile organic compounds (VOCs), such as toluene, 42 

benzene, and isoprene, and increase in dicarboxylic acids after 2-day aging indicate 43 

that these volatile organic compounds led to the formation of dicarboxylic acids. 44 

Keywords: Biomass burning, Dicarboxylic acids, Atmospheric aging, Stable carbon 45 

isotope, VOCs  46 
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1. Introduction 47 

Dicarboxylic acids (diacids), ketocarboxylic acids and α-dicarbonyls are 48 

common components of the atmospheric organic aerosol, accounting for 1–3% of the 49 

total organic carbon in urban areas and >10% of the carbon mass in remote regions 50 

(Kawamura and Usukura, 1993; Kawamura and Sakaguchi, 1999; Kerminen et al., 51 

2000; Zhao et al., 2018). Due to their high water-solubility and other physicochemical 52 

properties, diacids affect the hygroscopic growth of particulate matter (PM), and these 53 

compounds are involved in the activation of cloud condensation nuclei and formation 54 

of ice nuclei (Kawamura and Bikkina, 2016). Diacids and related compounds have 55 

been found in a wide variety of environments including urban settings (Ho et al., 2006; 56 

Kawamura and Ikushima, 1993; Meng et al., 2020; Sorathia et al., 2018; Wang et al., 57 

2002, 2006, 2012), mountains ranges (Kawamura et al., 2013; Kunwar et al., 2019), 58 

and remote marine atmospheres (Hoque et al., 2020; Kawamura and Usukura, 1993). 59 

They also have been reported in both the Arctic and Antarctic aerosols (Kawamura et 60 

al., 1996a, b; Narukawa et al., 2002, 2003) as well as polar ice cores (Legrand and De 61 

Angelis, 1996; Kawamura et al., 2001). Various studies have assessed the molecular 62 

distributions, temporal variability, and sources of diacids in different air-sheds. 63 

There are both primary and secondary sources for dicarboxylic acids (Mkoma 64 

and Kawamura, 2013). Primary sources include emissions from fossil fuel combustion 65 

(Kawamura and Kaplan, 1987;Rogge et al., 1993), cigarette burning (Rogge et al., 66 

1994), cooking (Rogge et al., 1991), and biomass burning (BB) (Narukawa et al., 67 

1999; Schauer et al., 2001). Of these, BB was found to be an important source of 68 

dicarboxylic acids and related compounds over regional and global scales (Kundu et 69 

al., 2010). Emissions from BB not only compose a major source of primary particles 70 

but also introduce aerosol precursors to the atmosphere (Akagi et al., 2011; Gilman et 71 

al., 2015; Reid et al., 2005). Secondary sources include particles produced by 72 

chemical/photochemical oxidation reactions of volatile organic compounds, especially 73 

those emitted from primary sources (Lim et al., 2013; Carlton et al., 2006, 2007).  74 

Being one of the major contributors to the global budget of aerosols, BB 75 
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emissions are of particular concern because they impact air quality, visibility, climate, 76 

and human health (Hodshire et al., 2019). As the largest developing country and one 77 

that burns large quantities of biomass, China has long suffered from severe air 78 

pollution from BB (Chen et al., 2016; Fullerton et al., 2008). Domestic crop residues 79 

(eg. rice, maize, and wheat straw) and firewood are the most significant energy 80 

sources in most rural areas, and these are commonly used for cooking and heating (Li 81 

et al., 2021; Tao et al., 2018). 82 

Although high concentrations of diacids have been detected in biomass 83 

combustion (FaLkovich et al., 2005; Kundu et al., 2010), it is still unclear on the 84 

distribution of diacids directly emitted by BB (Jaffrezo et al., 1998) or compared to 85 

those formed secondarily from percursors (Allen et al., 2004). In addition, limited 86 

data are available on the specific dicarboxylic acids emitted from burning of 87 

agricultural residues. Therefore, it is important to investigate the molecular 88 

composition of dicarboxylic acids in both fresh and aged BB aerosols to advance 89 

current understanding of the potential environmental and climatic effects. 90 

In this study, rice, maize and wheat straw were selected for laboratory 91 

simulations of fresh and aged BB aerosols. The study was conducted with the use of a 92 

combustion chamber and oxidation flow reactor (OFR). Fresh and aged BB aerosols 93 

were chemically analyzed for molecular characteristics and the stable carbon isotopic 94 

composition (δ
13

C) of selected dicarboxylic acids, ketocarboxylic acids, α-dicarbonyls, 95 

and benzoic. The objectives of this study were to (1) investigate the emissions of 96 

dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls from crop residue burning; 97 

(2) evaluate the effects of atmospheric aging processes on dicarboxylic acids and 98 

related compounds; and (3) investigate reactions of volatile organic carbon 99 

compounds (VOCs) with oxalic acid and intermediates that form in the aging process 100 

to explore potential formation mechanisms of selected organic acids. 101 

2. Methods 102 

2.1. Preparation and collection of fresh and aged BB aerosols 103 

Fresh smoke was generated by burning dry biomass fuels (i.e., rice, maize, and 104 
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wheat straw) in an ~8 m
3
 combustion chamber (Tian et al., 2015), and the smoke was 105 

then passed through a Potential Aerosol Mass-Oxidation Flow Reaction (PAM-OFR) 106 

(Aerodyne Research, LLC, Billerica, MA, USA) to simulate aging processes (Cao et 107 

al., 2020). The experimental setup is illustrated in supplementary Fig. S1. Detailed 108 

procedures for sample preparation and collection may be found in previous studies (Li 109 

et al., 2020, 2021; Niu et al., 2020). The PAM-OFR can be used to simulate an 110 

environment with extremely high oxidant concentrations with short residence times 111 

(Kang et al., 2007).  112 

For each test, ~100 g of the biomass fuel was burned on a combustion platform 113 

inside the combustion chamber. Each sampling period lasted 120–180 min, during 114 

which an equal amount of fuel was added to the platform 10 times at regular intervals. 115 

The entire burning cycle, including ignition, flaming, smoldering, and extinction, 116 

intends to simulate real-world source characterization without the use of combustor or 117 

heat preservation. Smoldering was the major driver of the combustion process.  118 

A portion of the diluted smoke was drawn through a quartz fiber filter (47 mm 119 

diameter, Whatman QM/A, Maidstone, UK) at 5 L min
−1

 using a mini-Vol PM2.5 120 

sampler (Airmetrics, OR, USA) to capture fresh emission, and another portion (~9 L 121 

min
−1

) was drawn into a 19-L cylinder PAM-OFR (with a diameter of 20 cm and 122 

length of 60 cm) to simulate atmospheric aging. The aging times are selected to 123 

represent lifetimes of regional air pollutants prior to arrival at a receptor (Chow et al., 124 

2019). Three oxidants (O3, •OH, and •HO2) were generated in the PAM chamber 125 

using irradiation from ultraviolet (UV) lamps. The UV lamps operated at a voltage of 126 

2 and 3.5 V, and the OH exposure values (OHexp) in the chamber were estimated at 127 

2.6 × 10
11

 and 8.8 × 10
11

 molecules-sec/m
3
, respectively. These levels corresponded 128 

to ~2 and 7 day of aging (Watson et al., 2019), assuming that a representative 129 

atmospheric •OH level of 1.5 × 10
6
 molecules/m

3 
(Mao et al., 2009). The aged 130 

aerosols were sampled following the reactions in the PAM-OFR chamber. Each test 131 

was conducted in triplicate to account for experimental errors and to provide a 132 

measure of variability, which was calculated as standard deviations. A total of 36 133 

samples were collected and analyzed for chemical composition. 134 
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2.2. Sample extraction, derivatization, and quantification 135 

For dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls analyzing, one 136 

quarter of each filter sample was extracted three times (15 min each) with purified 137 

(18.2 MΩ) water (Milli-Q, Merch, France) and ultrasonication. The pH of the aerosol 138 

extracts was adjusted to 8.5 to 9.0 using a 0.1 M potassium hydroxide solution prior to 139 

drying that convert carboxylic acids into their salts (Bikkina et al., 2021). This drying 140 

step improves the recovery of smaller diacids, such as oxalic acid (Hegde and 141 

Kawamura, 2012). Water extracts were concentrated to near dryness with a rotary 142 

evaporator under vacuum and then reacted with 14% BF3/n-butanol at 100 °C for 1 h 143 

to derivatize carboxyl groups to dibutyl esters and oxo groups to dibutoxyacetals. 144 

After derivatization, n-hexane was added and washed with pure water three times 145 

to remove the water-soluble inorganics such as hydrogen fluoride and boric acid. The 146 

hexane layer was concentrated to near dryness using a rotary evaporator under 147 

vacuum and a N2 blow-down technique, and then the esters and acetals of target 148 

analytes were dissolved in known amounts of n-hexane. Finally, the hexane layers 149 

were concentrated to 100 μL and analyzed using a capillary gas chromatography (GC; 150 

HP 6890, Agilent Technology, Santa Clara, CA, USA) equipped with a split/splitless 151 

injector and a flame ionization detector (FID). Peak identification was performed by 152 

comparing the GC retention times with those of authentic standards and confirmed by 153 

a thermal desorption (TD) unit coupled with a gas chromatograph/mass spectrometric 154 

detector (TD-GC/MS, Models 7890A/5975C, Agilent Technology, Santa Clara, CA, 155 

USA). The detection limits for those organic compounds were 0.1 ng m
-3

, and the 156 

analytical errors, based on the replicate analyses, were less than 15%. Recoveries of 157 

the target compounds were 83% for oxalic acid and 87% to 110% for the other 158 

species.   159 

2.3 Emission factor calculations 160 

Concentrations of the various species in the aged samples were affected by their 161 

initial emission, also undergo degradation and production through secondary chemical 162 

processes. Fresh and aged fuel-based emission factors (EF) for each measured 163 

chemical compound were calculated by dividing its filter mass by the mass of 164 
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combusted dry biomass fuel (Andreae and Merlet, 2001; Li et al., 2020; Tian et al., 165 

2015); that is: 166 

 Fi  
mi  vStk    tsample

 
p
 mfuel

    

where EFi (mg kg
−1

) is the EF of chemical compound i for the specific crop; mi (mg) 167 

is the mass of chemical compound i collected on the filter; vStk is the average stack 168 

flow velocity (m s
−1

) at standard conditions; D is the stack cross section (m
2
); tsample is 169 

the sampling duration (s); Qp is the sampling volume through the filter (m
3
) at 170 

standard temperature and pressure; and mfuel is the mass of burned biomass fuel (kg, 171 

dry weight).  172 

The dilution ratio (DR) was determined from the CO2 concentrations measured at 173 

the stack, diluted stack, and background, where:  174 

   
CO2,Stk  CO2, kg

CO2, il  CO2,  kg

 

where CO2,Stk is the CO2 concentration in the stack; CO2,Bkg the background CO2 175 

concentration in the atmosphere; and CO2,Dil the CO2 concentration in the diluted 176 

smoke.  177 

2.4. Stable carbon isotope composition of dicarboxylic acids 178 

Stable carbon isotopic determinations (δ
13

C) of dicarboxylic acids, 179 

ketocarboxylic acids, and α-dicarbonyls followed the techniques of Kawamura and 180 

Watanabe (2004). The isotope values of the derivatized samples were determined 181 

using a gas chromatography–isotope ratio mass spectrometer (GCIR-MS; Thermo 182 

Fisher,  elta V Advantage, Franklin, MA, USA). The δ
13

C values were then 183 

calculated for free organic acids using an isotope mass balance equation based on the 184 

measured δ
13

C values of derivatives and the derivatizing agent (BF3/n-butanol) 185 

(Kawamura and Watanabe, 2004). To ensure the analytical error of the δ
13

C values 186 

less than 0.2‰, each aerosol sample was analyzed in triplicate, to obtain the average 187 

values. 188 
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3. Results and Discussion 189 

3.1. Emission factors for dicarboxylic acids, ketocarboxylic acids, α-dicarbonyls  190 

Fresh and aged PM2.5 EFs for a homologous series of dicarboxylic acids, 191 

ketocarboxylic acids (glyoxylic acid, ωC2 and pyruvic acid, Pyr), α-dicarbonyls 192 

(glyoxal, Gly and methylglyoxal, mGly) and benzoic acid are presented in Table 1. 193 

The EFs for most fresh and aged diacids varied by severely order-of-magnitude with 194 

higher EFs after atmospheric aging. The highest fresh EF (i.e. EFfresh) was found for 195 

wheat straw ranging 44 - 122 mg kg
-1 

for succinic acid and 67-102 mg kg
-1

 for glyoxal, 196 

higher than those found in maize and rice. The arithmetic means and standard 197 

deviations for the EFfresh
 
of total dicarboxylic acids from burning of rice, maize, and 198 

wheat straws were 84 ± 36, 130 ± 47, and 307 ± 141 mg kg
−1

, respectively. 199 

As is shown Fig. 1, distributions of dicarboxylic acids in fresh emissions varied 200 

by crop types and species. Of the saturated n-dicarboxylic acids, succinic acid (C4) 201 

acid was the most abundant species in the maize and wheat straw with average EFfresh 202 

of 22 ± 12 and 83 ± 46 mg kg
−1

, respectively. Azelaic acid (C9) and C4 were the most 203 

abundant species from rice burning with EFfresh of 11 ± 2.9 and 10 ± 9.0 mg kg
−1

, 204 

respectively. These findings are consistent with the fresh smoke aerosols in Siberian 205 

BB plumes (Kalogridis et al., 2018), in which C4 and C9 were more abundant than 206 

oxalic acid (C2). Previous studies also showed C9 to be an oxidation product of 207 

unsaturated fatty acids in biomass smoke (Kawamura and Gagosian, 1987; Kawamura 208 

et al., 2013; Agarwal et al., 2010; Cao et al., 2017).  209 

Similar to the diacids, the highest EFfresh for ketocarboxylic acids and 210 

α-dicarbonyls were also found in wheat straw samples, with 44 ± 31 and 138 ± 91 mg 211 

kg
−1

, respectively. Glyoxal (Gly) was the highest α-dicarbonyls, with average EFfresh 212 

of 27 ± 3.9, 42 ± 10, and 84 ± 41 mg kg
−1

 for rice, maize and wheat straw, 213 

respectively. This is consistent with previous studies which showed that Gly is often 214 

more abundant than methylglyoxal (mGly) in polluted aerosols collected from China 215 

(Pavuluri et al., 2010;Ho et al., 2007). Benzoic acid also was determined, and its 216 

EFfresh for rice, maize, and wheat aerosols were 1.9 ± 0.2, 2.5 ± 0.4, and 3.1 ± 0.3 mg 217 
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kg
−1 

(Table 1). 218 

3.2. Effects of atmospheric aging processes 219 

3.2.1 Dicarboxylic acids 220 

The EFaged of 2- and 7-day diacids were 1650 ± 438 and 1957 ± 598 mg/kg, 221 

respectively (Table S1); approximately 10 times greater than the EFfresh. High 222 

aged/fresh ratios implies that the bulk of the total dicarboxylic acids were secondarily 223 

produced through aging processes. Longer exposure time in the atmosphere increased 224 

the formation of diacids as ratios of average aged/fresh increased from 9.1 (2-day) to 225 

10.8 (7-day) (Table S1).  226 

As shown in Fig. 2, oxalic acid (C2) was the most abundant of all measured 227 

diacids among three crops, with the highest EFaged found in wheat (1412 ± 328 mg/kg) 228 

after 7-day aging. The aged/fresh (A/F) ratios for oxalic acid increased by ~27% from 229 

50.8 (2-day) to 64.5 (7-day) (Table S1). These results are further evidence that PM2.5 230 

oxalic acid is largely produced by secondary photochemical processes rather than 231 

direct emissions in biomass burning. This also is a likely reason why C2 is often the 232 

most abundant diacid in ambient samples, especially in the oceanic and other remote 233 

areas (Hoque et al., 2020;Kawamura and Usukura, 1993;Kawamura and Sakaguchi, 234 

1999;Kunwar and Kawamura, 2014;Hegde and Kawamura, 2012;Kawamura and 235 

Bikkina, 2016;Wang et al., 2012). Two-day aging appeared to be sufficient for maize, 236 

with degradation after 7-day. This may partial due to the low VOCs produced in 237 

maize burn (Niu et al., 2020). The A/F ratios in Fig. 3 showed that 2-day aging is 238 

sufficient for many of the diacids. 239 

Succinic acid (C4) ranked second in abundance after C2, with 7-8 folds increased 240 

in EF after 2- and 7-day aging wheat. Although malonic acid (C3) is mainly produced 241 

by the photochemical oxidation of succinic acid, it also can be formed through the 242 

incomplete combustion of fossil fuels and biomass (Kawamura and Ikushima, 1993). 243 

In the atmosphere, C4 is typically more abundant than C3 originated from BB, 244 

vehicular engine exhaust and biogenic emissions (Fu et al., 2013; Kawamura and 245 

Kaplan, 1987; Kundu et al., 2010). Fig. 3 shows atmospheric aging increased the 246 

abundances of C3 and C4 with A/F ratios increased from 16.2 to 31.1 for malonic acid, 247 
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and from 5.7 to 8.0 in succinic acid from 2- to 7-day of aging (Table S1). These 248 

findings add to the evidence that these diacids are produced by the photo-oxidation of 249 

primary pollutants emitted from combustion process. Lower EFs and higher A/F ratios 250 

in aged and fresh malonic acid than those of succinic acid may be attributed to rapid 251 

oxidation rate of C3 or decarboxylation processing of C4 diacid during aging (Zhao et 252 

al., 2018). 253 

As mentioned above, C9 (azelic acid) is thought to be mainly formed through the 254 

photochemical oxidation of unsaturated fatty acids emitted by plants (Kawamura and 255 

Gagosian, 1987). Average EFs in azelic acid were low, ranging from 18 ±7.3 mg kg
−1

 256 

(fresh), to 51 ± 14 mg kg
−1

 (2-day), with A/F ratios of C9 of 2.8, and 2.2 for the 2- and 257 

7-day samples, respectively, suggesting that azelic acid is relatively stable with short 258 

residence time. Fig.3 shows that A/F ratios of other long-chain dicarboxylic acids and 259 

branched dicarboxylic acids did not show apparent changes between the 2- and 7-day 260 

samples, which may be due to the degradation of long-chain dicarboxylic acids 261 

(Enami et al., 2015;Legrand et al., 2007;Miyazaki et al., 2010). It is also possible that 262 

the laboratory combustion experiment did not produce adequate quantities of certain 263 

diacids. For example, C5 and C6 are commonly formed by reactions of cycloolefins 264 

emitted from anthropogenic sources with O3 (Hatakeyama et al., 1985), and phthalic 265 

acid as a product of the photochemical oxidation of aromatic hydrocarbon compounds 266 

(Kawamura and Ikushima, 1993). Additional laboratory experiments may be needed 267 

to reify different atmospheric process. 268 

3.2.2 Ketocarboxylic acids and α-carbonyls 269 

In contrast to the dicarboxylic acids, aging process were not apparent in 270 

ketocarboxylic acids as A/F ratios reduced by 16% from 13.8 (2-day) to 11.9 (7-day). 271 

Similar phenomenon was found for α-carbonyls with A/F ratios reduced by 64% from 272 

5.4 (2-day) to 3.3 (7-day). This suggests the possibility that the degradation of these 273 

intermediates to oxalic acid is faster than their formation by oxidation after 2 days of 274 

aging. Fig.3 also show apparent reduction EF of 33-42% from 2- to 7-day aging for 275 

glyoxal (Gly) and methylglyoxal (mGly) which may be due to the fact that both Gly 276 

and mGly initially can be oxidized to less volatile polar organic acids including 277 
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pyruvic acid (Pyr) and glyoxylic acid (ωC2) and then further oxidized to C2 (Wang et 278 

al., 2012;Warneck, 2003).  279 

3.3. Comparisons of diagnostic ratios of dicarboxylic acids in fresh and aged 280 

aerosols 281 

Patterns in the relative abundances of dicarboxylic acids have been used to 282 

evaluate biogenic versus anthropogenic source strengths and the photochemical 283 

processing of organic aerosols (Kawamura et al., 2012). Previous studies have shown 284 

that C4 can be directly oxidized into C2 or via C3 into C2 (Jung et al., 2010; 285 

Sorooshian et al., 2007), with C2 being an end-product of the photochemical oxidation 286 

(Wang et al., 2012). The ratios of C3/C4, C2/C4 and C2/total diacids can be regarded as 287 

indicators of aerosol aging (Cheng et al., 2013; Kunwar et al., 2019; Meng et al., 2018; 288 

Pavuluri et al., 2010), with higher ratios indicative of more aged aerosols (Kawamura 289 

and Sakaguchi, 1999). As shown in Table 2, the ratios in this study showed a clear 290 

atmospheric aging trend from fresh to 7-day aging with ratios of 0.7 to 6.4 for C2/C4, 291 

0.1 to 0.6 in C2/total diacids and 0.2 to 0.5 in C3/C4 with photochemically oxidization 292 

rune pronounced. 293 

 atios of ωC2/C2 and Gly/mGly can also be used to evaluate the oxidation of 294 

organic aerosols (Cheng et al., 2013, 2015; Kawamura et al., 2013). In the study, 295 

apparent reduction of the ωC2/C2 ratios from 1.3 (fresh) to 0.2 (7-day) supports the 296 

potential oxidation pathways from precursor glyoxylic to oxalic acids. Similarly, the 297 

Gly/mGly ratios in the biomass burning samples were higher in the fresh PM2.5 298 

samples (3.8) compared to the 2-day aged (2.3) and 7-day (2.0) aging, indicating the 299 

degradation for Gly proceeds more rapidly than mGly, and that is consistent with the 300 

decline Gly/mGly ratios in aged aerosols (Cheng et al., 2013).  301 

Ratios of C3/C4, C2/diacids, ωC2/C2, and Gly/mGly are similar among studies. 302 

Except for the higher C3/C4 ratio of 3.9 found in marine aerosols of over the pacific 303 

region (Kawamura and Sakaguchi, 1999), and lower C3/C4 ratios in Siberian biomass 304 

burning emissions in a large aerosol chamber (<0.03) (Kalogridis et al., 2018). The 305 

largest difference was found for C2/C4, varied from <1 for fresh aerosol in Siberian 306 

biomass burning (Kalogridis et al., 2018), to 25.2 from forest fire in Thailand 307 
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(Boreddy et al., 2020). Elevated C2/C4 ratios exceeding 10 were found in aged 308 

ambient Xi’an, China (10.4) (Cheng et al., 2013), Mt. Hua, China (10.7) (Meng et al., 309 

2014), marine aerosol, Pacific ocean (14.3) (Kawamura and Sakaguchi, 1999), and 310 

ambient island Okinawa, Japan (15.5) (Kunwar and Kawamura, 2014). These C2/C4 311 

ratios are ~63% to 142% higher than these reported in this study. Overall, these 312 

comparisons show the importance of photochemical aging, however, the atmospheric 313 

oxidation evidently was more extensive in aerosols from some remote mountain and 314 

marine environments. 315 

3.4. Stable carbon isotopes  316 

Stable carbon isotope ratios (δ
13

C) can provide insights into the sources of 317 

aerosols, Pavuluri and Kawamura (2016) reported that average δ
13

C values for C2 318 

from biogenic aerosols (-15.8‰) were less negative—i.e., contained more 
13

C and 319 

was isotopically enriched than those from anthropogenic aerosols (-19.5‰). Data for 320 

δ
13

C also can provide information on the processing or aging of organic aerosols 321 

because isotopic fractionation result from chemical reactions or phase transfer 322 

(Pavuluri and Kawamura, 2016; Zhang et al., 2016). Mass loading of δ
13

C for diacids 323 

in the fresh BB samples were too low to be detected by the GCIR-MS, but the δ
13

C 324 

values for C2 ranged from -23.3 to -21.0 ‰ (with an average of -21.9 ± 1.2 ‰) in 325 

2-day and -19.1 to -15.5 ‰ (-17.3 ± 1.7 ‰) for 7-day aged samples (Table 3).  326 

Table 3 shows that aged maize samples reported the a heaviest δ
13

C signatures 327 

than those of rice and wheat. This is likely because maize is a C4 plant, whereas wheat 328 

and rice are both C3 plants. Song et al. (2018) showed that δ
13

CTC in C4 plants is 329 

isotopically heavier than in C3 plants. Moreover, the δ
13

C of C2 is more abundant in 7- 330 

than 2-day samples (Table 3) with -13.1 ± 1.6 ‰ (2-day) and -7.1 ± 1.4 ‰ (7-day) in 331 

maize; -26.2 ± 1.8 ‰ (2-day) and -20.8 ± 3.3 ‰ (7-day) in rice and -26.5 ± 0.2 ‰ 332 

(2-day) and -24.0 ± 0.5 ‰ (7-day) in wheat combustion. The δ
13

C data for C3, C4 and 333 

ωC2 (Table S2) showed similar trends, consistent with previous studies. For example, 334 

Zhao et al. (2018) found that the δ
13

C values of C2 were related to aging. Pavuluri and 335 

Kawamura (2016) analyzed diacids, ωC2, and Gly for δ
13

C in anthropogenic and 336 

biogenic aerosol samples by UV irradiation, and reported more δ
13

C less negative 337 
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with longer irradiation times. During atmospheric oxidation reactions, organic 338 

compounds react with OH radicals, causing the release of CO2 and CO which contain 339 

relatively the lighter 
12

C isotope and thus leaving the remaining substrate enriched in 340 

13
C (Hoefs, 1997; Sakugawa and Kaplan, 1995). 341 

A comparison of δ
13

C values for C2 in the aerosols from selected environments is 342 

shown in Figure 4. Average δ
13

C value (-21.9 ± 1.2 ‰) of 2-day aged biomass 343 

burning of C2 was comparable to those reported for urban regions, such as Beijing 344 

(-21.8 ± 2.8‰) (Zhao et al., 2018) and Liaocheng (-19.8 ± 3.1‰) (Meng et al., 2020) 345 

(Table 3). With continued aging, the C2 δ
13

C of the 7-day samples (-17.3 ± 1.7 ‰) 346 

was more similar in samples from Mt. Tai (-16.5 ± 1.8‰) (Meng et al., 2018) and 347 

western pacific and southern ocean aerosol (-16.8 ± 0.8‰) (Wang and Kawamura, 348 

2006), but it was significantly lighter than that of samples from the Korea Climate 349 

Observatory at Gosan (-13.7 ± 2.5‰), which is a mountain background site in East 350 

Asia (Zhang et al., 2016). 351 

3.5. Relationships between volatile organic carbon compounds and dicarboxylic 352 

acids 353 

During the chamber experiment (Niu et al., 2020) concerning measured the VOC 354 

compounds. Table S3 presents the correlations between decreases in VOCs and 355 

increases in dicarboxylic acids from fresh to 2-day aged BB samples. Significant 356 

(0.01 <p < 0.05) correlations (R) were observed for toluene with Gly (R = 0.75), 357 

mGly (  = 0.81), Pyr (  =0.78), ωC2 (R = 0.78) and C2 (R = 0.67) (Fig. 5), suggesting 358 

that toluene was converted to diacids during the aging processes. Indeed, it has been 359 

reported that the photooxidation of toluene is a potential source of secondary organic 360 

aerosol (SOA) in urban air (Sato et al., 2007), and the major chemical components of 361 

the SOA include hemiacetal, peroxy hemiacetal oligomers and dicarboxylic acids. It 362 

also can be seen that benzene had significant correlations with mGly and C2 (R>0.59 363 

in Fig.5), implying that the oxidation of benzene led to diacid formation. And we can 364 

see that the slope of the correlation between the decrease of toluene and benzene and 365 

the increase of the precursor (Pyr and ωC2) is significantly higher than that of oxalic 366 

acid. 367 
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On the global scale isoprene is the most important precursor for C2, contributing 368 

70% to the global C2, while anthropogenic VOCs contribute 21% to C2 production 369 

(Myriokefalitakis et al., 2011). Thus, it is not surprising that isoprene correlated with 370 

C2 (R=0.58) (Fig.5). In addition, several alkenes and alkanes also had a significant 371 

correlation with C2 (Table S3), indicating that these species may react in secondary 372 

oxidation processes to generate oxalic acid. Previous studies have confirmed that 373 

dicarboxylic acids can be oxidation products of aromatic hydrocarbons (Borrás and 374 

Tortajada-Genaro, 2012), cycloolefins (Hamilton et al., 2006), and may originated 375 

from diesel vehicle exhaust (Samy and Zielinska, 2010). However, no significant 376 

correlation was found between decreases in VOCs and increases in 7-day aged 377 

dicarboxylic acids. For the longer aging times, the particulate phase compounds may 378 

be further oxidized to generate other compounds besides diacids. 379 

4. Conclusions 380 

The emission factors (EFs) of dicarboxylic acids and related compounds in 381 

experimentally produced fresh and aged biomass burning aerosols were compared. 382 

For fresh emissions, succinic acid (C4) was the most abundant diacid species followed 383 

by azelaic acid (C9). After atmospheric aging, C2 dominated the diacids, with elevated 384 

emission factors. Ratios of aged to fresh (A/F) for C2 increased from 50.8 (2-day) to 385 

64.5 (7-day). These results suggest that the dicarboxylic acids in the atmosphere 386 

largely originated from secondary photochemical processes as opposed to primary 387 

emissions from biomass burning. The 2-day A/F ratios 2.8 of azelaic acid (C9) 388 

degraded by 27% after 7-days, suggesting that this species is relatively stable with 389 

short residence time.  390 

Decreasing trends in EFs were found for ketocarboxylic acids and α-dicarbonyls, 391 

from 2-day to 7-day aging with A/F ratios reduced from 13.8 to 11.9 and from 5.4 to 392 

3.3, respectively. These results suggest that after 2-day aging, the net degradation of 393 

these intermediates was faster than their rates of formation. Compared with 2-day 394 

samples, the δ
13

C of C2, C3, C4 and ωC2 in 7-day samples became more positive or 395 

isotopically heavier after the additional aging, likely due to kinetic isotope 396 
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fractionation effects. Moreover, the δ
13

C values for the aged maize samples in both 397 

the 2- and 7-day samples were significantly more positive than those of rice and 398 

wheat. This is likely due to differences in their photosynthetic pathways as maize is a 399 

C4 plant, while wheat and rice are both C3 plants. The correlations between VOCs 400 

(benzene, toluene, isoprene, etc.) and oxalic acid (C2) and intermediates indicated that 401 

the oxidation of VOCs led to the formation of diacids. The results provide in-depth 402 

understanding of SOAs formation in regions greatly affected by biomass burning.  403 
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 717 

Figure 1 Average emission factors of dicarboxylic acids and related compounds in 718 

fresh PM2.5 aerosols from biomass burning. 719 
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 720 

Figure 2 Comparison between 2- and 7-day aged average PM2.5 emission factors of 721 

A: dicarboxylic acids, B: ketocarboxylic acids, and C: α-carbonyls for laboratory 722 

combustion of rice, maize, and wheat straw. 723 

  724 
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 725 

Figure 3 Average emission factors of dicarboxylic acids and related compounds from 726 

biomass burning experiment for the fresh, 2- and 7-day aged PM2.5 aerosols. The 727 

squares and dots denote the ratios of aged to fresh (A/F) sample for the dicarboxylic 728 

acids and related compounds after 2- and 7-day aging. 729 
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 732 

Figure 5 Regressions between the decreases of specific VOCs (toluene, benzene and 733 

isoprene) and increases of C2 and its intermediates methylglyoxal (mGly), Glyoxal, 734 

(Gly), Pyruvic acid (Pyr) and Glyoxylic (ωC2).735 
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Table 3 Stable carbon isotope ratios (δ
13
C, ‰) of C2 in atmospheric aerosols from selected 740 

locations  741 

Sampling site 
Particle 

size 
Min

1
 Max Ave. Std. Sampling interval References 

Urban  

Liaocheng, China 

PM2.5 -31.8 -16.6 -21.7 3.3 Jan. to Feb. (Daytime) 

Meng et al. (2020) PM2.5 -26.5 -14.1 -17.9 2.6 Jan. to Feb. 

(Nighttime) PM2.5 -31.8 -14.1 -19.8 3.5 Jan. to Feb. (Winter) 

Beijing, China 

PM2.5 -23.7 -15.0 -20.1 3.0 Sep. to Nov. 

(Autumn) 
Zhao et al. (2018) 

PM2.5 -27.2 -14.8 -22.9 3.4 Dec. to Feb. (Winter) 

PM2.5 -25.0 -16.6 -21.9 2.1 Mar. to May (Spring) 

PM2.5 -27.0 -19.1 -22.4 2.7 Jun. to Jul. (Summer) 

Sapporo, Japan TSP -22.4 -14.0 -18.8 2.0 May to Jul. 
Aggarwal et al. 

(2008) 

Marine  

Western Pacific and 

Southern Ocean 
TSP -27.1 -6.7 -16.8 0.8 Nov. to Feb. 

Wang and 

Kawamura (2006) 

Mountain  

Mt. Tai, China 

PM2.5 -19.4 -13.0 -15.8 1.9 Jul. to Aug. (Daytime) 

Meng et al. (2018) PM2.5 -20.1 -12.1 -17.2 1.7 Jul. to Aug. 

(Nighttime) PM2.5 -20.1 -12.1 -16.5 1.9 Jul. to Aug. (Summer) 

Background  

Gosan, Korea 

TSP -15.0 -10.6 -12.6 1.4 Mar. to May (Spring) 

Zhang et al. (2016) 
TSP -14.1 -7.5 -11.5 2.8 Jun. to Aug. 

(Summer) TSP -16.7 -13.2 -14.7 1.4 Sep. to Nov. 

(Autumn) TSP -20.5 -10.1 -15.8 4.3 Jan. to Feb. (Winter) 

UV-irradiated  

Ambient 

anthropogenic 

aerosol 

PM10   -19.5  Non-irradiated 

Pavuluri and 

Kawamura (2016) 

PM10   -13.1 3.6 UV-irradiated 

Ambient biogenic 

aerosol 

PM10   -15.8  Non-irradiated 

PM10   -12.9 6.9 UV-irradiated 

This study  

Maize straw PM2.5 -14.9 -12.1 -13.1 1.6 2-day aged 

This study 

Rice straw  PM2.5 -28.2 -24.6 -26.2 1.8 2-day aged 

Wheat straw  PM2.5 -26.7 -26.3 -26.5 0.2 2-day aged 

Maize straw  PM2.5 -9.1 -6.0 -7.1 1.4 7-day aged 

Rice straw  PM2.5 -23.7 -17.2 -20.8 3.3 7-day aged 

Wheat straw  PM2.5 -24.6 -23.5 -24.0 0.5 7-day aged 

Biomass burning 
PM2.5 -23.3 -21.0 -21.9 1.2 2-day aged 

PM2.5 -19.1 -15.5 -17.3 1.7 7-day aged 

1Min, Max, Ave, and Std stand for minimum, maximum, arithmetic mean, and standard deviation. 742 

 743 
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